Lists

Wednesday, November 22, 2017

Image Sensors at ISSCC 2018

ISSCC 2018 publishes its Advance Program. There is a lot of interesting image sensor papers in the Image Sensors session:

5.1 A Back-Illuminated Global-Shutter CMOS Image Sensor with Pixel-Parallel 14b Subthreshold ADC
M. Sakakibara, K. Ogawa, S. Sakai, Y. Tochigi, K. Honda, H. Kikuchi, T. Wada, Y. Kamikubo, T. Miura, M. Nakamizo, N. Jyo, R. Hayashibara, Y. Furukawa, S. Miyata, S. Yamamoto, Y. Ota, H. Takahashi, T. Taura, Y. Oike, K. Tatani, T. Nagano, T. Ezaki, T. Hirayama,
Sony, Japan

5.2 An 8K4K-Resolution 60fps 450ke- -Saturation-Signal Organic-Photoconductive-Film Global Shutter CMOS Image Sensor with In-Pixel Noise Canceller
K. Nishimura, S. Shishido, Y. Miyake, M. Yanagida, Y. Satou, M. Shouho, H. Kanehara, R. Sakaida, Y. Sato, J. Hirase, Y. Tomekawa, Y. Abe, H. Fujinaka, Y. Matsunaga, M. Murakami, M. Harada, Y. Inoue,
Panasonic, Japan

5.3 A 1/2.8-inch 24Mpixel CMOS Image Sensor with 0.9μm Unit Pixels Separated by Full-Depth Deep-Trench Isolation
Y. Kim, W. Choi, D. Park, H. Jeoung, B. Kim, Y. Oh, S. Oh, B. Park, E. Kim, Y. Lee, T. Jung, Y. Kim, S. Yoon, S. Hong, J. Lee, S. Jung, C-R. Moon, Y. Park, D. Lee, D. Chang, Samsung Electronics, Hwaseong, Korea

5.4 A 1/4-inch 3.9Mpixel Low-Power Event-Driven Back-Illuminated Stacked CMOS Image Sensor
O. Kumagai, A. Niwa, K. Hanzawa, H. Kato, S. Futami, T. Ohyama, T. Imoto, M. Nakamizo, H. Murakami, T. Nishino, A. Bostamam, T. Iinuma, N. Kuzuya, K. Hatsukawa, B. Frederick, B. William, T. Wakano, T. Nagano, H. Wakabayashi, Y. Nitta
Sony Japan and USA

5.5 A 1.1μm-Pitch 13.5Mpixel 3D-Stacked CMOS Image Sensor Featuring 230fps Full-High Definition and 514fps High-Definition Videos by Reading 2 or 3 Rows Simultaneously Using a Column-Switching Matrix
P-S. Chou, C-H. Chang, M. M. Mhala, C-M. Liu, C-P. Chao, C-Y. Huang, H. Tu, T. Wu, S-F. Yeh, S. Takahashi, Y. Huang,
TSMC, Hsinchu, Taiwan

5.6 A 2.1μm 33Mpixel CMOS Imager with Multi-Functional 3-Stage Pipeline ADC for 480fps High Speed Mode and 120fps Low-Noise Mode
T. Yasue, K. Tomioka, R. Funatsu, T. Nakamura, T. Yamasaki, H. Shimamoto, T. Kosugi, J. Sungwook, T. Watanabe, M. Nagase, T. Kitajima, S. Aoyama, S. Kawahito
NHK Science & Technology Research Laboratories, Tokyo, Japan;
Brookman Technology, Hamamatsu, Japan;
Shizuoka University, Hamamatsu, Japan

5.7 A 20ch TDC/ADC Hybrid SoC for 240×96-Pixel 10%-Reflection less than 0.125%-Precision 200m-Range Imaging LiDAR with Smart Accumulation Technique
K. Yoshioka, H. Kubota, T. Fukushima, S. Kondo, T. T. Ta, H. Okuni, K. Watanabe, Y. Ojima, K. Kimura, S. Hosoda, Y. Oota, T. Koizumi, N. Kawabe, Y. Ishii, Y. Iwagami, S. Yagi, I. Fujisawa, N. Kano, T. Sugimoto, D. Kurose, N. Waki, Y. Higashi, T. Nakamura, Y. Nagashima, H. Ishii, A. Sai, N. Matsumoto
Toshiba, Kawasaki, Japan; 2
Toshiba Memory, Kawasaki, Japan

5.8 1Mpixel 65nm BSI 320MHz Demodulated TOF Image Sensor with 3.5μm Global Shutter Pixels and Analog Binning
C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, P. O'Connor
Microsoft, Mountain View, CA

5.9 A 256×256 45/65nm 3D-Stacked SPAD-Based Direct TOF Image Sensor for LiDAR Applications with Optical Polar Modulation for up to 18.6dB Interference Suppression
A. Ronchini Ximenes, P. Padmanabhan, M-J. Lee, Y. Yamashita, D. N. Yaung, E. Charbon
Delft University of Technology, Delft, The Netherlands;
EPFL, Neuchatel, Switzerland;
TSMC, Hsinchu, Taiwan

5.10 A 32×32-Pixel Time-Resolved Single-Photon Image Sensor with 44.64μm Pitch and 19.48% Fill-Factor with On-Chip Row/Frame Skipping Features Reaching 800kHz Observation Rate for Quantum Physics Applications
L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. Moreno Garcia, M. Unternährer, B. Bessire, A. Stefanov, D. Stoppa, M. Perenzoni,
Fondazione Bruno Kessler (FBK), Trento, Italy;
University of Bern, Bern, Switzerland;

There is also a tutorial:

T6 Single-Photon Detection in CMOS
Matteo Perenzoni, Fondazione Bruno Kessler, Trento, Italy
Every single photon carries information in position, time, etc. Single-photon devices are now demonstrated and available in several CMOS technologies, but the needed circuits and architectures are completely different from conventional visible light sensors.

This tutorial starts from the description of structure and operation of a single-photon detector, and it continues on the definition of circuits for the front-end electronics needed to efficiently manage the extracted information, addressing challenges and requirements. Then, it concludes with an overview of the different architectures that are specific for each application field, with examples in the biomedical, consumer, and space domain.


One of the forums has Sony presentation on compressive sensing:

Compressive Imaging for CMOS Image Sensors
Yusuke Oike, Sony Semiconductor Solutions, Atsugi, Japan

And F3 forum has two more presentations:

What’s the Best Technology and Architecture for your Time of Flight System?
David Stoppa, ams AG, Rueschlikon, Switzerland

Optical Phased Array LiDAR
Michael Watts, Analog Photonics, Boston, MA

5 comments:

  1. Albert Theuwissen - Harvest ImagingNovember 25, 2017 at 11:50 AM

    In another forum (F3) David Stoppa will give a talk about optimum ToF choices.

    ReplyDelete
    Replies
    1. Thanks, added this too. Incidentally, F3 forum also has OPA Lidar presentation, apparently based on Globalfoundry new photonics platform. It allows integration of beam forming and/or scanning onto a silicon chip, together with image sensor. I'm not sure that Lidar is a good application for that, but it's quite an interesting capability.

      Delete
  2. Can someone explains the significance of Panasonic's paper? What is the dynamic range in terms of EV equivalent to "450ke- Saturation Signal"? TIA.

    ReplyDelete
    Replies
    1. Panasonic published several papers with organic films in 2016 and 2017 ISSCC; the array size was about 2MP. This time it is 33MP ...

      Delete
    2. Well, if we have 450ke saturation and the read noise similar to current m43-cameras (5-10e) then the DR is around 16EV.

      Delete

All comments are moderated to avoid spam and personal attacks.