"Traditional paradigms for imaging rely on the use of a spatial structure, either in the detector (pixels arrays) or in the illumination (patterned light). Removal of the spatial structure in the detector or illumination, i.e., imaging with just a single-point sensor, would require solving a very strongly ill-posed inverse retrieval problem that to date has not been solved. Here, we demonstrate a data-driven approach in which full 3D information is obtained with just a single-point, single-photon avalanche diode that records the arrival time of photons reflected from a scene that is illuminated with short pulses of light. Imaging with single-point time-of-flight (temporal) data opens new routes in terms of speed, size, and functionality. As an example, we show how the training based on an optical time-of-flight camera enables a compact radio-frequency impulse radio detection and ranging transceiver to provide 3D images."
Lists
▼
Saturday, August 01, 2020
From Single-pixel ToF Histogram to 3D Spatial Image
Phys.org, OSA Optica: University of Glasgow, TU Delft, and Politecnico di Milano publishe a paper "Spatial images from temporal data" by Alex Turpin, Gabriella Musarra, Valentin Kapitany, Francesco Tonolini, Ashley Lyons, Ilya Starshynov, Federica Villa, Enrico Conca, Francesco Fioranelli, Roderick Murray-Smith, and Daniele Faccio.
"Traditional paradigms for imaging rely on the use of a spatial structure, either in the detector (pixels arrays) or in the illumination (patterned light). Removal of the spatial structure in the detector or illumination, i.e., imaging with just a single-point sensor, would require solving a very strongly ill-posed inverse retrieval problem that to date has not been solved. Here, we demonstrate a data-driven approach in which full 3D information is obtained with just a single-point, single-photon avalanche diode that records the arrival time of photons reflected from a scene that is illuminated with short pulses of light. Imaging with single-point time-of-flight (temporal) data opens new routes in terms of speed, size, and functionality. As an example, we show how the training based on an optical time-of-flight camera enables a compact radio-frequency impulse radio detection and ranging transceiver to provide 3D images."
"Traditional paradigms for imaging rely on the use of a spatial structure, either in the detector (pixels arrays) or in the illumination (patterned light). Removal of the spatial structure in the detector or illumination, i.e., imaging with just a single-point sensor, would require solving a very strongly ill-posed inverse retrieval problem that to date has not been solved. Here, we demonstrate a data-driven approach in which full 3D information is obtained with just a single-point, single-photon avalanche diode that records the arrival time of photons reflected from a scene that is illuminated with short pulses of light. Imaging with single-point time-of-flight (temporal) data opens new routes in terms of speed, size, and functionality. As an example, we show how the training based on an optical time-of-flight camera enables a compact radio-frequency impulse radio detection and ranging transceiver to provide 3D images."
No comments:
Post a Comment
All comments are moderated to avoid spam and personal attacks.