Sunday, June 17, 2018

Canon Explores Large Image Sensor Future

Canon publishes an article on its image sensor projects for academic and industrial customers.

The world's largest high-Sensitivity CMOS sensor is measuring ~20 cm square. As such, a 20-cm-square sensor is the largest size that can be manufactured on 300mm wafer, and is equivalent to nearly 40 times the size of a 35 mm full-frame CMOS sensor:

Canon has spent many years working to reduce the pixel size for CMOS sensors, making possible a pixel size of 2.2 µm for a total of approximately 120MP on a single sensor. The APS-H size (approx. 29 x 20 mm) CMOS sensor boasts approximately 7.5 times the number of pixels and 2.6 times the resolution of sensors of the same size featured in existing products. This sensor offers potential for a range of industrial applications, including cameras for shooting images for large-format poster prints, cameras for the image inspection of precision parts, aerospace cameras, and omnidirectional vision cameras.

Friday, June 15, 2018

TrinamiX Paper in Nature

Nature publishes BASF spin-off TrinamiX paper "Focus-Induced Photoresponse: a novel way to measure distances with photodetectors" by Oili Pekkola, Christoph Lungenschmied, Peter Fejes, Anke Handreck, Wilfried Hermes, Stephan Irle, Christian Lennartz, Christian Schildknecht, Peter Schillen, Patrick Schindler, Robert Send, Sebastian Valouch, Erwin Thiel, and Ingmar Bruder.

"We present the Focus-Induced Photoresponse (FIP) technique, a novel approach to optical distance measurement. It takes advantage of a universally-observed phenomenon in photodetector devices, an irradiance-dependent responsivity. This means that the output from a sensor is not only dependent on the total flux of incident photons, but also on the size of the area in which they fall. If probe light from an object is cast on the detector through a lens, the sensor response depends on how far in or out of focus the object is. We call this the FIP effect. Here we demonstrate how to use the FIP effect to measure the distance to that object. We show that the FIP technique works with different sensor types and materials, as well as visible and near infrared light. The FIP technique operates on a working principle, which is fundamentally different from all established distance measurement methods and hence offers a way to overcome some of their limitations. FIP enables fast optical distance measurements with a simple single-pixel detector layout and minimal computational power. It allows for measurements that are robust to ambient light even outside the wavelength range accessible with silicon.

In this paper, we demonstrated the measurement principle at distances up to 2 m and showed a resolution of below 500 µm at a distance of 50 cm. In the Supplementary Information S7, distance measurements up to 70 m can be found.

F-35 Gets 6 Cameras for Surround View

PRNewswire: Surround view cameras reach defense industry. Lockheed Martin selectes Raytheon to develop and deliver the next generation Distributed Aperture System (DAS) for the F-35 fighter jet.

The F-35's DAS collects and sends high resolution, real-time imagery to the pilot's helmet from six IR cameras mounted around the aircraft, allowing pilots to see the environment around them – day or night. With the ability to detect and track threats from any angle, the F-35 DAS gives pilots situational awareness of the battlespace.

imec is Back to Film, Organic Film

imec promotes its organic film image sensors:

"We demonstrated a first film measuring 6 by 8 cm – which can check 4 fingers simultaneously – and which has a resolution of 200ppi. The second film – designed for a single fingerprint – has a resolution of 500ppi. This level of accuracy is what would be typical for the FBI to identify someone correctly.

The image sensors detect visible light between 400 and 700 nm that is reflected by the skin. They can also detect light that penetrates the skin before being reflected. This latter feature is of value for detecting a heartbeat, which provides an extra security check.

The fingerprint and palm print sensor is made up of a layer of oxide thin-film transistors with organic photodiodes on top. These photodiodes can then be ‘tuned’ by using a different organic material so that they detect a different wavelength, such as near infrared. This enables the vein pattern in a hand to be visualized, which is even more precise for accurate identification than a palm print.

In addition to this fingerprint scanner based on photodiodes and light, imec and Holst Centre are also working on a scanner that uses thermal sensors (PYCSEL project). Once again a lower layer of oxide thin-film transistors is used. The upper layer is a material that measures electric temperature changes. The fingerprint is then detected indirectly by local variations in temperature changes that correspond with the pattern of the fingerprint. Here again a resolution of 500ppi is achievable.

Thursday, June 14, 2018

ON Semi Talks about Automotive Pixel Technologies

AutoSens publishes an interview with ON Semi talking about "Super Exposing" pixel that reduces LED flicker and other ON innovations for the automotive market:

Mazda CX-3 SUV Features Nighttime Pedestrian Detection

Nikkei: Mazda CX-3 compact SUV comes with, as a standard feature, an automatic emergency braking system that supports nighttime pedestrians detection:

"Nighttime pedestrians are detected by the monocular camera. To support nighttime pedestrians, in terms of software, the logic of detecting pedestrians was improved, enhancing the accuracy of recognizing pedestrians at night. Its hardware was also improved to increase the speed of exchanging data between the [Mobileye] EyeQ3 image processing chip and memory."

Wednesday, June 13, 2018

More AutoSens Detroit Interviews

AutoSens publishes more interviews from Detroit:

Xenomatix talks about many design wins for its LiDAR:

Tetravue talks about its technology:

FLIR talks about thermal camera for automotive applications:

Algolux talks about its ML algorithms:

3D Imaging with PDAF Pixels

OSA Optics Express publishes a paper "Depth extraction with offset pixels" by W. J. Yun, Y. G. Kim, Y. M. Lee, J. Y. Lim, H. J. Kim, M. U. K. Khan, S. Chang, H. S. Park, and C. M. Kyung, KAIST, QiSens, and Kongju National University, Korea.

"Numerous depth extraction techniques have been proposed in the past. However, the utility of these techniques is limited as they typically require multiple imaging units, bulky platforms for computation, cannot achieve high speed and are computationally expensive. To counter the above challenges, a sensor with Offset Pixel Apertures (OPA) has been recently proposed. However, a working system for depth extraction with the OPA sensor has not been discussed. In this paper, we propose the first such system for depth extraction using the OPA sensor. We also propose a dedicated hardware implementation for the proposed system, named as the Depth Map Processor (DMP). The DMP can provide depth at 30 frames per second at 1920 × 1080 resolution with 31 disparity levels. Furthermore, the proposed DMP has low power consumption as for the aforementioned speed and resolution it only requires 290.76 mW. The proposed system makes it an ideal choice for depth extraction systems in constrained environments."

Tuesday, June 12, 2018

NIT Demos Log Sensor with LED Flicker Suppression

New Imaging Technologies publishes a demo of its NSC1701 sensor featuring LED flicker suppression mode: