Friday, July 05, 2024

Videos du jour : under display cameras, SPADs

 


Designing Phase Masks for Under-Display Cameras

Diffractive blur and low light levels are two fundamental challenges in producing high-quality photographs in under-display cameras (UDCs). In this paper, we incorporate phase masks on display panels to tackle both challenges. Our design inserts two phase masks, specifically two microlens arrays, in front of and behind a display panel. The first phase mask concentrates light on the locations where the display is transparent so that more light passes through the display, and the second phase mask reverts the effect of the first phase mask. We further optimize the folding height of each microlens to improve the quality of PSFs and suppress chromatic aberration. We evaluate our design using a physically-accurate simulator based on Fourier optics. The proposed design is able to double the light throughput while improving the invertibility of the PSFs. Lastly, we discuss the effect of our design on the display quality and show that implementation with polarization-dependent phase masks can leave the display quality uncompromised.

 

 


Passive Ultra-Wideband Single-Photon Imaging

We consider the problem of imaging a dynamic scene over an extreme range of timescales simultaneously—seconds to picoseconds—and doing so passively, without much light, and without any timing signals from the light source(s) emitting it. Because existing flux estimation techniques for single-photon cameras break down in this regime, we develop a flux probing theory that draws insights from stochastic calculus to enable reconstruction of a pixel’s time-varying flux from a stream of monotonically-increasing photon detection timestamps. We use this theory to (1) show that passive free-running SPAD cameras have an attainable frequency bandwidth that spans the entire DC-to-31 GHz range in low-flux conditions, (2) derive a novel Fourier-domain flux reconstruction algorithm that scans this range for frequencies with statistically-significant support in the timestamp data, and (3) ensure the algorithm’s noise model remains valid even for very low photon counts or non-negligible dead times. We show the potential of this asynchronous imaging regime by experimentally demonstrating several never-seen-before abilities: (1) imaging a scene illuminated simultaneously by sources operating at vastly different speeds without synchronization (bulbs, projectors, multiple pulsed lasers), (2) passive non-line-of-sight video acquisition, and (3) recording ultra-wideband video, which can be played back later at 30 Hz to show everyday motions—but can also be played a billion times slower to show the propagation of light itself.


 
SoDaCam: Software-defined Cameras via Single-Photon Imaging

Reinterpretable cameras are defined by their post-processing capabilities that exceed traditional imaging. We present "SoDaCam" that provides reinterpretable cameras at the granularity of photons, from photon-cubes acquired by single-photon devices. Photon-cubes represent the spatio-temporal detections of photons as a sequence of binary frames, at frame-rates as high as 100 kHz. We show that simple transformations of the photon-cube, or photon-cube projections, provide the functionality of numerous imaging systems including: exposure bracketing, flutter shutter cameras, video compressive systems, event cameras, and even cameras that move during exposure. Our photon-cube projections offer the flexibility of being software-defined constructs that are only limited by what is computable, and shot-noise. We exploit this flexibility to provide new capabilities for the emulated cameras. As an added benefit, our projections provide camera-dependent compression of photon-cubes, which we demonstrate using an implementation of our projections on a novel compute architecture that is designed for single-photon imaging.

Thursday, July 04, 2024

PetaPixel article on Samsung's 200MP sensor

Full article here: https://petapixel.com/2024/06/27/samsung-announces-worlds-first-200mp-sensor-for-telephoto-cameras/


Samsung Unveils World’s First 200MP Sensor for Smartphone Telephoto Cameras

 


Samsung has announced three new image sensors for main and sub cameras in upcoming smartphones. Among the trio of new chips, Samsung unveiled the world’s first 200-megapixel telephoto camera sensor for mobile devices.

The ISOCELL HP9, the industry’s first 200MP telephoto sensor for smartphones, features a Type 1/1.4 format and 0.56μm pixel size. Samsung explains that the sensor has a proprietary high-refractive microlens that uses a novel material and significantly improves the sensor’s light-gathering capabilities. This works by more precisely directing light to the corresponding RGB color filter. Samsung claims this results in 12% better light sensitivity (based on signal-to-noise ratio 10) and 10% improved autofocus contrast performance compared to Samsung’s prior telephoto sensor. 

“Notably, the HP9 excels in low-light conditions, addressing a common challenge for traditional telephoto cameras. Its Tetra²pixel technology merges 16 pixels (4×4) into a large, 12MP 2.24μm-sized sensor, enabling sharper portrait shots — even in dark settings — and creating dramatic out-of-focus bokeh effects,” the Korean tech giant explains.

When used alongside a new remosaic algorithm, Samsung says its new HP9 sensor offers 2x or 4x in-sensor zoom modes, achieving up to 12x total zoom when paired with a 3x optical zoom telephoto module, “all while maintaining crisp image quality.”

Next is the ISOCELL GNJ, a dual-pixel 50-megapixel image sensor in Type 1/1.57 format. This sensor sports 1.0μm pixels, and each pixel includes a pair of photodiodes, enabling “fast and accurate autofocus, similar to the way human eyes focus.” The sensor also captures complete color information, which Samsung says helps with focusing and image quality.

The sensor utilizes an in-sensor zoom function, which promises good video quality. It also offers benefits for still photography, as Samsung says the in-sensor zoom function can reduce artifacts and moiré.

Thanks to an improved high-transmittance anti-reflective layer (ARL), plus Samsung’s high-refractive microlenses, the GNJ boasts better light transmission and promises consistent image quality. It also has an upgraded pixel isolation material to minimize the crosstalk between adjacent pixels, resulting in more detailed, accurate photos.

As Samsung notes, these improvements also result in a more power-efficient design. The sensor offers a 29% improvement in live view power efficiency and a 34% reduction in power use when shooting 4K/60p video.

Rounding out the three new sensors is the ISOCELL JN5, a 50-megapixel Type 1/2.76 sensor with 0.64μm pixels. Because of its slim optical format, the new JN5 sensor can be used across primary and sub-cameras, including ultra-wide, wide, telephoto, and front-facing camera units.

The sensor includes dual vertical transfer gate (Dual VTG) technology to increase charge transfer within pixels, which reduces noise in extremely low-light conditions. It also leverages Super Quad Phase Detection (Super QPD) to rapidly adjust focus when capturing moving subjects.

Yet another fancifully named feature is dual slope gain (DSG), which Samsung says enhances the JN5’s high-dynamic range (HDR) performance. This works by amplifying analog signals (photons) into two signals, converting them into digital data, and combining them. This sounds similar to dual ISO technology, which expands dynamic range by combining low-gain and high-gain data into a single file.

Wednesday, July 03, 2024

onsemi acquires SWIR Vision Systems

From Businesswire: https://www.businesswire.com/news/home/20240702703913/en/onsemi-Enhances-Intelligent-Sensing-Portfolio-with-Acquisition-of-SWIR-Vision-Systems

onsemi Enhances Intelligent Sensing Portfolio with Acquisition of SWIR Vision Systems

SCOTTSDALE, Ariz.--(BUSINESS WIRE)--As part of onsemi’s continuous drive to provide the most robust, cutting-edge technologies for intelligent image sensing, the company announced today it has completed the acquisition of SWIR Vision Systems®. SWIR Vision Systems is a leading provider of CQD® (colloidal quantum-dot-based) short wavelength infrared (SWIR) technology – a technology that extends the detectable light spectrum to see through objects and capture images that were not previously possible. The integration of this patented technology within onsemi’s industry-leading CMOS sensors will significantly enhance the company’s intelligent sensing product portfolio and pave the way for further growth in key markets including industrial, automotive and defense.

CQD uses nanoparticles or crystals with unique optical and electronic properties that can be precisely tuned to absorb an extended wavelength of light. This technology extends the visibility and detection of systems beyond the range of standard CMOS sensors to SWIR wavelengths. To date, SWIR technology has been limited in adoption due to the high cost and manufacturing complexity of the traditional indium gallium arsenide (InGAas) process. With this acquisition, onsemi will combine its silicon-based CMOS sensors and manufacturing expertise with the CQD technology to deliver highly integrated SWIR sensors at lower cost and higher volume. The result are more compact, cost-effective imaging systems that offer extended spectrum and can be used in a wide array of commercial, industrial and defense applications.

These advanced SWIR sensors are able to see through dense materials, gases, fabrics and plastics, which is essential across many industries, particularly for industrial applications such as surveillance systems, silicon inspection, machine vision imaging and food inspection. In autonomous vehicle imaging, the higher spectra will create better visibility to see through difficult conditions such as extreme darkness, thick fog or winter glare.

SWIR Vision Systems is now a wholly owned subsidiary of onsemi, with its highly skilled team being integrated into the company’s Intelligent Sensing Group. The team will continue to operate in North Carolina. The acquisition is not expected to have any meaningful impact on onsemi’s near to midterm financial outlook.

Cambridge Mechatronics CEO interview: Capturing the smartphone camera market and more

 

In this episode of the Be Inspired series, Andy Osmant, CEO of Cambridge Mechatronics explains the countless use cases for the company’s shape memory alloy (SMA) actuators, from smart phone cameras to insulin pumps, and how they decided which markets to target. Andy also delves into their experience changing business models to also sell semiconductors, and how being part of the Cambridge ecosystem has supported the growth of the business.
 

0:00-3:54 About Cambridge Mechatronics
3:54-5:14 Controlling SMA
5:14-9:15 Supply chains and relationships
9:15-11:56 Other use cases
11:56-15:51 The Cambridge ecosystem
15:51-19:36 Looking ahead