Arxiv.org paper "Recent Progress and Future Prospects of 2D-based Photodetectors" by Nengjie Huo and Gerasimos Konstantatos from Barcelona Institute of Science and Technology and ICREA reviews graphene imagers developed in the recent years.
"Conventional semiconductors such as silicon and InGaAs based photodetectors have encountered a bottleneck in modern electronics and photonics in terms of spectral coverage, low resolution, non-transparency, non-flexibility and CMOS-incompatibility. New emerging 2D materials such as graphene, TMDs and their hybrid systems thereof, however, can circumvent all these issues benefiting from mechanical flexibility, extraordinary electronic and optical properties, as well as wafer-scale production and integration. Heterojunction-based photodiodes based on 2D materials offer ultrafast and broadband response from visible to far infrared range. Phototransistors based on 2D hybrid systems combined with other material platforms such as quantum dots, perovskites, organic materials, or plasmonic nanostructures yield ultrasensitive and broadband light detection capabilities. Notably the facile integration of 2D-photodetectors on silicon photonics or CMOS platforms paves the way towards high performance, low-cost, broadband sensing and imaging modalities."
No comments:
Post a Comment
All comments are moderated to avoid spam and personal attacks.