This plenary presentation was delivered at the Electronic Imaging Symposium held in Burlingame, CA over 2-6 February 2025. For more information see: http://www.electronicimaging.org
Title: Imaging in the Age of Artificial Intelligence
Abstract: AI is revolutionizing imaging, transforming how we capture, enhance, and experience visual content. Advancements in machine learning are enabling mobile phones to have far better cameras, enabling capabilities like enhanced zoom, state-of-the-art noise reduction, blur mitigation, and post-capture capabilities such as intelligent curation and editing of your photo collections, directly on device. This talk will delve into some of these breakthroughs, and describe a few of the latest research directions that are pushing the boundaries of image restoration and generation, pointing to a future where AI empowers us to better capture, create, and interact with visual content in unprecedented ways.
Speaker: Peyman Milanfar, Distinguished Scientist, Google (United States)
Biography: Peyman Milanfar is a Distinguished Scientist at Google, where he leads the Computational Imaging team. Prior to this, he was a Professor of Electrical Engineering at UC Santa Cruz for 15 years, two of those as Associate Dean for Research. From 2012-2014 he was on leave at Google-x, where he helped develop the imaging pipeline for Google Glass. Over the last decade, Peyman's team at Google has developed several core imaging technologies that are used in many products. Among these are the zoom pipeline for the Pixel phones, which includes the multi-frame super-resolution ("Super Res Zoom") pipeline, and several generations of state of the art digital upscaling algorithms. Most recently, his team led the development of the "Photo Unblur" feature launched in Google Photos for Pixel devices. Peyman received his undergraduate education in electrical engineering and mathematics from the UC Berkeley and his MS and PhD in electrical engineering from MIT. He holds more than two dozen patents and founded MotionDSP, which was acquired by Cubic Inc. Along with his students and colleagues, he has won multiple best paper awards for introducing kernel regression in imaging, the RAISR upscaling algorithm, NIMA: neural image quality assessment, and Regularization by Denoising (RED). He's been a Distinguished Lecturer of the IEEE Signal Processing Society and is a Fellow of IEEE "for contributions to inverse problems and super-resolution in imaging".
Miyauchi et al. from Brillnics Inc., Japan published a paper titled "A 3.96-μm, 124-dB Dynamic-Range, Digital-Pixel Sensor With Triple- and Single-Quantization Operations for Monochrome and Near-Infrared Dual-Channel Global Shutter Operation" in IEEE JSSC (May 2025).
Abstract: This article presents a 3.96- μ m, 640×640 pixel stacked digital pixel sensor capable of capturing co-located monochrome (MONO) and near-infrared (NIR) frames simultaneously in a dual-channel global shutter (GS) operation. A super-pixel structure is proposed with diagonally arranged 2×2 MONO and NIR sub-pixels. To enhance visible light sensitivity, large and small non-uniform micro-lenses are formed on the MONO and NIR sub-pixels, respectively. Each floating diffusion (FD) shared super-pixel is connected to an in-pixel analog-to-digital converter and two banks of 10-bit static random access memories (SRAMs) to enable the dual-channel GS operation. To achieve high dynamic range (DR) in the MONO channel, a triple-quantization (3Q) operation is performed. Furthermore, a single-channel digital-correlated double sampling (D-CDS) 3Q operation is implemented. The fabricated sensor achieved 6.2-mW low power consumption at 30 frames/s with dual-channel capture. The MONO channel achieved 124-dB DR in the 3Q operation and 60 dB for the NIR channel. The sensor fits the stringent form-factor requirement of an augmented reality headset by consolidating MONO and NIR imaging capabilities.
Sony Group is contemplating a spinoff of its semiconductor unit, a move that could see Sony Semiconductor Solutions become an independent entity as early as this year, reports Bloomberg. The move, which is still under discussion, is part of the group’s strategy to streamline business operations and concentrate on core entertainment sector. The potential spinoff would involve distributing most of Sony's holding in the chip business to its shareholders while retaining a minority stake.
According to Bloomberg, sources indicate that Sony Group is weighing the spin-off of its semiconductor subsidiary, Sony Semiconductor Solutions, with an IPO potentially taking place as early as this year. Another report from Bloomberg adds that the move would mark the PlayStation maker’s latest step in streamlining its operations and strengthening its focus on entertainment. As noted by the report, sources indicate that Sony is exploring a “partial spin-off” structure, under which the parent company would retain a stake in the subsidiary.