ResearchGate publishes a paper "Design and Optical Simulation of a Sensor Pixel for an Optical Readout-Based Thermal Imager" by Ambali Odebowale and Mohamed Ramy Abdelrahman from King Saud University.
"In this paper, we present an optical design and analysis of a single pixel element detector in an optical readout-based infrared imaging system. The proposed thermal imaging system contains no readout integrated circuitry and thus can be considered as a low cost alternative to typical thermal imaging systems. In this paper, we present the design and optical simulation details for a fabry perot cavity filter (FPCF)-based sensor configuration operating in the transmission mode at 650nm and as a Long Wave Infrared (LWIR) absorber in the 8000nm-12000nm band. The temperature tuning of the FPCF resonant frequency is dependent on the thermo-optic sensitivity of its cavity layer. The performance of the FPCF sensor is considered at different cavity layer thermo-optic coefficients (TOCs) and for different thermal scene temperature variations. The proposed sensor was found to be sensitive to 25mK thermal scene temperature variations."
No comments:
Post a Comment
All comments are moderated to avoid spam and personal attacks.