AIP Applied Physics Reviews publishes National University of Singapore paper "Black phosphorus photonics toward on-chip applications" by Li Huang and Kah-Wee Ang.
"Unceasing efforts have been devoted to photonics based on black phosphorus ever since it came under the spotlight of two-dimensional materials research six years ago. The direct bandgap of black phosphorus is tunable by layer number, vertical electric field, and chemical doping, covering a broad spectrum for efficient light manipulation. The optical anisotropy further enables the identification and control of light polarization. Along with high carrier mobility, nonlinear optical properties, and integration capability due to its layered lattice structure, black phosphorus manifests itself as a promising multipurpose material for chip-scale optoelectronics. In this manuscript, we review the research on black phosphorus photonics, with a focus on the most fundamental active functions in photonic circuits: photodetection, electro-optic modulation, light emission, and laser pulse generation, aiming at evaluating the feasibility of integrating these black phosphorus-based components as a compact system for on-chip applications."
No comments:
Post a Comment
All comments are moderated to avoid spam and personal attacks.