Vrije Universiteit Brussel, Belgium, publishes a paper "Current-Assisted Single Photon Avalanche Diode (CASPAD) Fabricated in 350 nm Conventional CMOS" by Gobinath Jegannathan, Hans Ingelberts, and Maarten Kuijk.
"A current-assisted single-photon avalanche diode (CASPAD) is presented with a large and deep absorption volume combined with a small p-n junction in its middle to perform avalanche trigger detection. The absorption volume has a drift field that serves as a guiding mechanism to the photo-generated minority carriers by directing them toward the avalanche breakdown region of the p-n junction. This drift field is created by a majority current distribution in the thick (highly-resistive) epi-layer that is present because of an applied voltage bias between the p-anode of the avalanching region and the perimeter of the detector. A first CASPAD device fabricated in 350-nm CMOS shows functional operation for NIR (785-nm) photons; absorbed in a volume of 40 × 40 × 14 μm3. The CASPAD is characterized for its photon-detection probability (PDP), timing jitter, dark-count rate (DCR), and after pulsing."
No comments:
Post a Comment
All comments are moderated to avoid spam and personal attacks.